If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-49=0
a = 18; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·18·(-49)
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{2}}{2*18}=\frac{0-42\sqrt{2}}{36} =-\frac{42\sqrt{2}}{36} =-\frac{7\sqrt{2}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{2}}{2*18}=\frac{0+42\sqrt{2}}{36} =\frac{42\sqrt{2}}{36} =\frac{7\sqrt{2}}{6} $
| 4x-7=9x+5 | | -4(x+1)=-6x-22 | | 4(y-3)-6y=-16 | | 3x+5=−x+2 | | -2(x-9)=4x-6x+18 | | -13=a/19 | | 4/9=-7/3t | | 3.1=v/3+4.4 | | -3x+18=4x+46 | | 2x^2-5x=104 | | X^2-5x=102 | | 2x^2+3x+260=0 | | a=3.14*50000^2 | | 4=-2(y+6) | | .05x-2=8 | | 8-u=290 | | 2j+6=2j+6 | | -3z-4=6z-9z+6 | | 3(x+3(x+1)=5+x | | 11x+1=89° | | X=7a-8a+10a | | 11x+1=89• | | 9m+(1m-20)=20 | | 6n+6n=4n+8 | | 3×r-(-15)=-24 | | 11+3=3x() | | 9=z-15 | | 16+5a=4a-a | | -5-7=7x+5-6x | | 12+3n=4+7n | | 1,8-0,3x=0 | | 4/12.5=x/1 |